Neurogenic Urodynamic Technique

Ruwan Fernando

Consultant Obstetrician & Urogynaecology Subspecialist
Honorary Clinical Senior Lecturer

St Mary's Hospital
Imperial College Healthcare NHS Trust
London
The normal micturition cycle

STORAGE PHASE

Bladder filling
- Bladder relaxes
- Urethra contracts
- Pelvic floor contracts

VOIDING PHASE

First sensation to void
- Bladder relaxes
- Urethra contraction increases
- Pelvic floor contracts

Normal desire to void
- Bladder contracts
- Urethra relaxes
- Pelvic floor relaxes
- Micturition

Bladder filling
- Bladder relaxes
- Urethra contracts
- Pelvic floor contracts
Pressure – volume curve during micturition cycle

STORAGE PHASE
1. Accommodation
2. First sensation
3. Postponement

VOIDING PHASE
4. Initiation of voiding
5. Isometric Detrusor contraction
6. Sustained Detrusor contraction
7. Relaxation phase
Voiding phase

- Cortical facilitation
- Co-ordination of Micturition motor function
 - Parasympathetic Stimulation (M3)
 - Somatic N inhibition
 - Urethral Sphincter & PFM relaxation
- Detrusor contraction

Storage phase

- Cortical inhibition
- Co-ordination of bladder storage function
 - Sympathetic N Stimulation (β3)
 - Somatic N stimulation
 - Detrusor relaxation
- Urethral Sphincter & PFM contraction
The bladder cycle

FILLING PHASE

• Compliant organ – dependant on elastic properties of the bladder wall

• Fills with minimal ↑ in pressure – “accommodation”

• Urethra remains closed during filling
The bladder cycle

VOIDING PHASE
• Voluntary action

Desire to void

Relaxation of pelvic floor/
Descent of bladder base
& ↓ intraurethral pressure

Contraction of the bladder

Intravesical pressure > intraurethral pressure
→ void
The bladder cycle

NEURAL CONTROL

- Infrasacral – peripheral nerves
- Suprasacral - spinal cord
- Suprapontine - intracranial
Neurological Lesions

• Loss of function – "areflexia" or denervation

• Release of reflex function – "over activity" or hyperreflexia
Neurogenic detrusor overactivity

Incomplete/non-traumatic spinal cord lesions

- Sprouting of new pathways
- Increased detrusor contractions
Detrusor sphincter dyssnergia

• 70-100% of supraspinal cord lesions

• Contraction of the external urethral sphincter during an involuntary detrusor contraction

• Can be diagnosed with sphincter EMG findings or simultaneous urethral and detrusor pressure measurements

• Videourodynamics better at getting diagnosis

• Large residuals, recurrent UTI’s, high voiding pressures and hydronephrosis
Detrusor sphincter dyssynergia (DSD)

- Diagnosis crucial as 50% chance of urological problems within 5 years
- Treatment directed at bladder sphincter dysfunction
Detrusor Overactivity & Detrusor sphincter dyssynergia (DSD)

Lesions between sacral spinal cord & pons
e.g thoracic & cervical cord injury

• 10-20% SCI pts with DSD have dyssynergia of urethral sphincter
• Manage with ISC or sphincter ablation to ↓ detrusor pressures
Detrusor sphincter dyssynergia (DSD)

Sacral & lumbar injury
- Low pressure urine storage system
- Manage with ISC

Upper motor neurone injury
- Increased bladder tone & decreased compliance
- May lead to upper tract damage
Conditions affecting the brain

- CV accident
- Parkinson’s Disease
- Brain neoplasms
- Dementia
- Shy-Drager syndrome (Multiple System Atrophy) (SDS)(MSA) is a rare degenerative condition resulting from degeneration of certain nerve cells in the brain and spinal cord.
Conditions affecting spinal cord

- Spinal cord injury
- Multiple sclerosis
- Intervertebral disc lesion
- Ankylosing spondylitis
- Guillan-Barré syndrome
- Tabes dorsalis
- AIDS
- Lyme disease
- Poliomyelitis
- Herpes zoster
Conditions affecting peripheral nervous system

- Pelvic plexus injury
- Abdominoperineal injury
- Hysterectomy
- Diabetic neuropathy
Neurological evaluation

- History
- Physical examination
- Urine bacteriological samples
- Renal function studies
- Radiological evaluation – upper tracts
 - lower tracts
- Endoscopic examination
- Urodynamic/video-urodynamic evaluation
History

- Neurological disease
- Surgery
- Trauma
- Urinary infection
- Incontinence
- Medication
Examination

Assessment of sacral reflexes

• Bulbocavernosus reflex (S3 and 4)
• Cough reflex (S2 – 4)
• Anal skin reflex (S5)
Bacteriological studies

UTI can worsen or cause symptoms of storage failure

- Major cause of morbidity & mortality in patients with neuropathic bladder
- Pyuria $\geq 10^4$ WBC suggests infection
- Treat if symptomatic or pyuria
- No consensus on management
Renal function studies

Abnormal renal function studies suggests

• High-pressure storage
• High-pressure emptying
• Infection with reflux
• Intrinsic renal or pre-renal disease

Need to modify techniques to account for muscle wasting
Radiological studies

Upper tract evaluation

• Voiding cystourethrogram
• IVP
• Renal USS and urogram
Endoscopic examination

- Primary & secondary urethral anatomic pathology
- Areas suggestive of malignant change
Residual urine

• Do not drain on catheterisation in patients with detrusor hyperreflexia and high residual volumes

• Sudden and complete bladder emptying alters pattern of reflex detrusor activity/detrusor-sphincter dyssynergia

• Check residual with ultrasound or catheter at another time
Postvoid residual

- PVR suggests outlet resistance +/- or detrusor Contractility

- Areflexic bladder
- Detrusor sphincter dyssynergia
Why perform urodynamics?

- Symptoms of neurogenic bladder often not specific
- Urodynamics aids diagnosis and therapy

BUT

- Correlation of urodynamics and symptoms is only \(~50\)%
Why perform urodynamics?

• Symptomatic treatment of patients with multiple sclerosis and lower urinary tract dysfunction cure/improves 28%
• Treatment led by urodynamics of patients with multiple sclerosis cure/improves 83%

Blaivas 1980
Neurogenic bladder dysfunction

Urodynamics describes

- Dysfunction of bladder, urethra & pelvic floor
- Co-ordination during filling and voiding
- Influence on other pathology (autonomic dysreflexia)
Basic principles

• Not deliberately provocative

• May need several voiding cycles

• Perform 3-6 months after spinal injury
To image or not to image?

- Anatomical abnormalities: bladder diverticula, trabeculation, vesicoureteric reflux, dyssynergia
- Best shown using videocystourethrography
Filling rate

- Start at 10 ml/min
- Slowly increase up to 20 or 30 ml/min
- Stop filling temporarily if detrusor pressure starts to rise
- Restart once filling falls or equilibrates

ICI 1998
Voiding cycles

- First voiding sequence unrepresentative after catheterisation
- 2 or 3 voiding cycles needed
- Use dual lumen catheter
Indications for repeat urodynamics

• Recurrent UTIs

• Development of upper tract dilatation

• Onset of autonomic hyperreflexia

• Change in voiding patterns
EMG recordings

- Needle electrodes in external anal sphincter, levator ani and striated urethral sphincter

- Superficial electrodes on anal plug

- Variations between 3 sites in partial cauda equina lesions
EMG recordings

- Perineal floor innervation & control
- Integrity of innervation
- Diagnosis of neuropathy
- Co-ordination of detrusor & striated sphincter during filling & voiding
EMG recordings

Normal EMG

• Voluntary contraction, reflex activation & bladder filling → ↑ EMG activity

• Voiding → ↓ EMG activity

• Polyphasic potentials rare
EMG recordings

Neurological lesions

- Infrasacral lesions → absent EMG & ↑ polyphasic potentials

- DSD → Presence/persistence of EMG activity during a detrusor contraction
Special problems

• Intact conus reflexes and suppositories

• Asymptomatic bacteriuria and prophylactic antibiotics

• Positioning - if paralysed examine supine in right oblique position
Special problems

- Catheterisation may cause spasm
- Catheters may difficult to pass as urethral sphincter spasm
- Abdominal and limb spasm
Autonomic dysreflexia

- Occurs during filling phase
- Patients with neuropathy and high spinal cord injuries
- Excessive sweating, pounding headache, hypertension, tachycardia or bradycardia
- Blood pressure monitoring throughout filling
- If blood pressure rises stop test immediately and empty bladder
Conclusion

- Investigation of the neurological patient requires time
- Different techniques of emptying and filling
- Care should be taken of possible complications